Graduate Texts in Physics Ser.: Quantum Information Processing : Theory and Implementation by Mark Hillery, János A. Bergou and Mark Saffman (2022, Trade Paperback)
Reviews"Several device photos are included, along with many diagrams ... . Clearly intended as a textbook, the work includes multiple challenging problems at the end of each chapter. ... For professionals and graduate students who are willing to tackle advanced math, this book is an excellent introduction to quantum information processing, providing a good mix of breadth and depth in an exciting and rapidly evolving field." (Bogdan Hoanca, optica-opn.org, February 3, 2022)
Dewey Edition23
Number of Volumes1 vol.
IllustratedYes
Dewey Decimal006.3843
Table Of ContentPreface.- Introduction.- The Density Matrix.- Entanglement.- Generalized Quantum Dynamics.- Quantum Measurement Theory.- Quantum Cryptography.- Quantum Algorithms.- Quantum Machines.- Decoherence and Quantum Error Correction.- The Stabilizer Formalism.- Information Theory.- Physical Requirements for Quantum Computing.- Qubits Coupled to the Environment.- Atomic Qubits.- Photonic Qubits.- Solid State Qubits.- Comparison and Outlook.- Index.
SynopsisThis new edition of a well-received textbook provides a concise introduction to both the theoretical and experimental aspects of quantum information at the graduate level. While the previous edition focused on theory, the book now incorporates discussions of experimental platforms. Several chapters on experimental implementations of quantum information protocols have been added: implementations using neutral atoms, trapped ions, optics, and solidstate systems are each presented in its own chapter. Previous chapters on entanglement, quantum measurements, quantum dynamics, quantum cryptography, and quantum algorithms have been thoroughly updated, and new additions include chapters on the stabilizer formalism and the Gottesman-Knill theorem as well as aspects of classical and quantum information theory. To facilitate learning, each chapter starts with a clear motivation to the topic and closes with exercises and a recommended reading list. Quantum Information Processing: Theory and Implementation will be essential to graduate students studying quantum information as well as and researchers in other areas of physics who wish to gain knowledge in the field.