Big Data Fundamentals: Concepts, Drivers & Techniques (The Pearson Service Tech,

omgtextbooks
(1440)
Registrado como vendedor profesional
USD29,99
Aproximadamente25,92 EUR
Estado:
En buen estado
Used book in good condition. Shows typical wear. Quick shipping. Satisfaction guaranteed!
Respira tranquilidad. Se aceptan devoluciones.
Envío:
USD6,99 (aprox. 6,04 EUR) USPS Media MailTM.
Ubicado en: Multiple Locations, Estados Unidos
Entrega:
Entrega prevista entre el sáb. 18 oct. y el sáb. 25 oct. a 94104
Las fechas previstas de entrega (se abre en una nueva ventana o pestaña) incluyen el tiempo de manipulación del vendedor, el código postal de origen, el código postal de destino y la hora de aceptación, y dependen del servicio de envío seleccionado y de que el pago se haya hecho efectivoel pago se haya hecho efectivo (se abre en una nueva ventana o pestaña). Los plazos de entrega pueden variar, especialmente en épocas de mucha actividad.
Devoluciones:
30 días para devoluciones. El comprador paga el envío de la devolución..
Pagos:
    Diners Club

Compra con confianza

Garantía al cliente de eBay
Si no recibes el artículo que has pedido, te devolvemos el dinero. Más informaciónGarantía al cliente de eBay - se abre en una nueva ventana o pestaña
El vendedor asume toda la responsabilidad de este anuncio.
N.º de artículo de eBay:388496770051
Última actualización el 14 oct 2025 22:00:22 H.EspVer todas las actualizacionesVer todas las actualizaciones

Características del artículo

Estado
En buen estado
Libro que se ha leído pero que está en buen estado. Daños mínimos en la tapa, incluidas rozaduras, pero sin roturas ni agujeros. Es posible que no incluya sobrecubierta para tapas duras. Tapa muy poco desgastada. La mayoría de las páginas están en buen estado con muy pocas arrugas o roturas. El texto subrayado a lápiz es prácticamente inexistente, no hay texto resaltado ni anotaciones en los márgenes. No faltan páginas. Consulta el anuncio del vendedor para obtener más información y la descripción de cualquier posible imperfección. Ver todas las definiciones de estadose abre en una nueva ventana o pestaña
Notas del vendedor
“Used book in good condition. Shows typical wear. Quick shipping. Satisfaction guaranteed!”
Book Title
Big Data Fundamentals: Concepts, Drivers & Techniques (The Pears,
Topic
Data Mining
Narrative Type
Data Mining
Genre
N/A
Intended Audience
N/A
ISBN
9780134291079
Categoría

Acerca de este producto

Product Identifiers

Publisher
Pearson Education
ISBN-10
0134291077
ISBN-13
9780134291079
eBay Product ID (ePID)
215948360

Product Key Features

Number of Pages
240 Pages
Language
English
Publication Name
Big Data Fundamentals : concepts, Drivers and Techniques
Publication Year
2016
Subject
Databases / Data Warehousing, Databases / Data Mining, Databases / General
Type
Textbook
Author
Paul Buhler, Wajid Khattak, Thomas Erl
Subject Area
Computers
Series
The Pearson Service Technology Series from Thomas Erl Ser.
Format
Trade Paperback

Dimensions

Item Height
0.7 in
Item Weight
13.6 Oz
Item Length
9 in
Item Width
6.9 in

Additional Product Features

Intended Audience
Scholarly & Professional
LCCN
2015-953680
Dewey Edition
23
Illustrated
Yes
Dewey Decimal
006.3/12
Synopsis
"This text should be required reading for everyone in contemporary business." --Peter Woodhull, CEO, Modus21 "The one book that clearly describes and links Big Data concepts to business utility." --Dr. Christopher Starr, PhD "Simply, this is the best Big Data book on the market " --Sam Rostam, Cascadian IT Group "...one of the most contemporary approaches I've seen to Big Data fundamentals..." --Joshua M. Davis, PhD The Definitive Plain-English Guide to Big Data for Business and Technology Professionals Big Data Fundamentals provides a pragmatic, no-nonsense introduction to Big Data. Best-selling IT author Thomas Erl and his team clearly explain key Big Data concepts, theory and terminology, as well as fundamental technologies and techniques. All coverage is supported with case study examples and numerous simple diagrams. The authors begin by explaining how Big Data can propel an organization forward by solving a spectrum of previously intractable business problems. Next, they demystify key analysis techniques and technologies and show how a Big Data solution environment can be built and integrated to offer competitive advantages. Discovering Big Data's fundamental concepts and what makes it different from previous forms of data analysis and data science Understanding the business motivations and drivers behind Big Data adoption, from operational improvements through innovation Planning strategic, business-driven Big Data initiatives Addressing considerations such as data management, governance, and security Recognizing the 5 "V" characteristics of datasets in Big Data environments: volume, velocity, variety, veracity, and value Clarifying Big Data's relationships with OLTP, OLAP, ETL, data warehouses, and data marts Working with Big Data in structured, unstructured, semi-structured, and metadata formats Increasing value by integrating Big Data resources with corporate performance monitoring Understanding how Big Data leverages distributed and parallel processing Using NoSQL and other technologies to meet Big Data's distinct data processing requirements Leveraging statistical approaches of quantitative and qualitative analysis Applying computational analysis methods, including machine learning, Big Data Science Fundamentals offers a comprehensive, easy-to-understand, and up-to-date understanding of Big Data for all business professionals and technologists. Leading enterprise technology author Thomas Erl introduces key Big Data concepts, theory, terminology, technologies, key analysis/analytics techniques, and more - all logically organized, presented in plain English, and supported by easy-to-understand diagrams and case study examples., "This text should be required reading for everyone in contemporary business." --Peter Woodhull, CEO, Modus21 "The one book that clearly describes and links Big Data concepts to business utility." --Dr. Christopher Starr, PhD"Simply, this is the best Big Data book on the market!" --Sam Rostam, Cascadian IT Group"...one of the most contemporary approaches I've seen to Big Data fundamentals..." --Joshua M. Davis, PhD The Definitive Plain-English Guide to Big Data for Business and Technology Professionals Big Data Fundamentals provides a pragmatic, no-nonsense introduction to Big Data. Best-selling IT author Thomas Erl and his team clearly explain key Big Data concepts, theory and terminology, as well as fundamental technologies and techniques. All coverage is supported with case study examples and numerous simple diagrams. The authors begin by explaining how Big Data can propel an organization forward by solving a spectrum of previously intractable business problems. Next, they demystify key analysis techniques and technologies and show how a Big Data solution environment can be built and integrated to offer competitive advantages. Discovering Big Data's fundamental concepts and what makes it different from previous forms of data analysis and data science Understanding the business motivations and drivers behind Big Data adoption, from operational improvements through innovation Planning strategic, business-driven Big Data initiatives Addressing considerations such as data management, governance, and security Recognizing the 5 "V" characteristics of datasets in Big Data environments: volume, velocity, variety, veracity, and value Clarifying Big Data's relationships with OLTP, OLAP, ETL, data warehouses, and data marts Working with Big Data in structured, unstructured, semi-structured, and metadata formats Increasing value by integrating Big Data resources with corporate performance monitoring Understanding how Big Data leverages distributed and parallel processing Using NoSQL and other technologies to meet Big Data's distinct data processing requirements Leveraging statistical approaches of quantitative and qualitative analysis Applying computational analysis methods, including machine learning, "This text should be required reading for everyone in contemporary business." --Peter Woodhull, CEO, Modus21 "The one book that clearly describes and links Big Data concepts to business utility." --Dr. Christopher Starr, PhD "Simply, this is the best Big Data book on the market!" --Sam Rostam, Cascadian IT Group "...one of the most contemporary approaches I've seen to Big Data fundamentals..." --Joshua M. Davis, PhD The Definitive Plain-English Guide to Big Data for Business and Technology Professionals Big Data Fundamentals provides a pragmatic, no-nonsense introduction to Big Data. Best-selling IT author Thomas Erl and his team clearly explain key Big Data concepts, theory and terminology, as well as fundamental technologies and techniques. All coverage is supported with case study examples and numerous simple diagrams. The authors begin by explaining how Big Data can propel an organization forward by solving a spectrum of previously intractable business problems. Next, they demystify key analysis techniques and technologies and show how a Big Data solution environment can be built and integrated to offer competitive advantages. Discovering Big Data's fundamental concepts and what makes it different from previous forms of data analysis and data science Understanding the business motivations and drivers behind Big Data adoption, from operational improvements through innovation Planning strategic, business-driven Big Data initiatives Addressing considerations such as data management, governance, and security Recognizing the 5 "V" characteristics of datasets in Big Data environments: volume, velocity, variety, veracity, and value Clarifying Big Data's relationships with OLTP, OLAP, ETL, data warehouses, and data marts Working with Big Data in structured, unstructured, semi-structured, and metadata formats Increasing value by integrating Big Data resources with corporate performance monitoring Understanding how Big Data leverages distributed and parallel processing Using NoSQL and other technologies to meet Big Data's distinct data processing requirements Leveraging statistical approaches of quantitative and qualitative analysis Applying computational analysis methods, including machine learning
LC Classification Number
QA76.9.D32

Descripción del artículo del vendedor

Información de vendedor profesional

Certifico que todas mis actividades de venta cumplirán todas las leyes y reglamentos de la UE.
Acerca de este vendedor

omgtextbooks

96,7% de votos positivos7,5 mil artículos vendidos

Se unió el feb 2023
Registrado como vendedor profesional
Visitar tiendaContactar

Valoraciones detalladas sobre el vendedor

Promedio durante los últimos 12 meses
Descripción precisa
4.7
Gastos de envío razonables
4.6
Rapidez de envío
4.9
Comunicación
4.8

Votos de vendedor (1.581)

Todas las valoracionesselected
Positivas
Neutras
Negativas
  • a***i (13975)- Votos emitidos por el comprador.
    Mes pasado
    Compra verificada
    Exceptionally Positive Experience Buying From This Seller, Exemplary Fast Early Delivery, Perfect packing job, Exactly as Described, Great Customer Communication and Service, EXCELLENT TRANSACTION, Fair Prices, Highly Recommend Buying From This Seller!!! YOUR the BEST seller on e-Bay. Way to go!!
  • m***a (267)- Votos emitidos por el comprador.
    Último año
    Compra verificada
    The book was in exactly the condition described in the listing. I generally don’t buy books that only have one photo.It was shipped quickly. The book arrived via Amazon box truck and was in Amazon packaging, so I assume this seller also lists books on Amazon. I wish I had known this as I am trying to not shop Amazon. I just think other buyers might want to know this. Still, the book was packed with care in a bubble envelope. Shipping costs were reasonable, but there was no tracking available.
  • l***l (650)- Votos emitidos por el comprador.
    Últimos 6 meses
    Compra verificada
    This item was reported mailed within 3 days of order. However, I did not receive it. I waited 4 days past expected delivery date before notifying seller. Seller reported that the item must have been list in the mail, and I received an apology and a refund the next day. Disappointed in but receiving the book, but I would definitely purchase from this seller again