AGOTADO EN ESTE MOMENTO

Grundlehren Der Mathematischen Wissenschaften Ser.: Analysis and Geometry of Markov Diffusion Operators by Michel LeDoux, Dominique Bakry and Ivan Gentil (2016, Trade Paperback)

Acerca de este artículo

Product Identifiers

PublisherSpringer International Publishing A&G
ISBN-103319343238
ISBN-139783319343235
eBay Product ID (ePID)240656543

Product Key Features

Number of PagesXx, 552 Pages
LanguageEnglish
Publication NameAnalysis and Geometry of Markov Diffusion Operators
Publication Year2016
SubjectGeometry / Differential, Probability & Statistics / Stochastic Processes, Probability & Statistics / General, Mathematical Analysis
TypeTextbook
Subject AreaMathematics
AuthorMichel Ledoux, Dominique Bakry, Ivan Gentil
SeriesGrundlehren Der Mathematischen Wissenschaften Ser.
FormatTrade Paperback

Dimensions

Item Height1.2 in
Item Weight30.5 Oz
Item Length9.2 in
Item Width6.1 in

Additional Product Features

Intended AudienceTrade
Dewey Edition23
Reviews"It is extremely rich. It is more original and inspirational than a treatise. One can use it and benefit from it in many ways: as a reference book, as an inspiration source, by focusing on a property or on an example. ... From the beginning to the end, this book definitely has a strong personality and a characteristic taste. ... anybody who wants to explore analytic, probabilistic or geometric properties of Markov semigroups to have a look at it first." (Thierry Coulhon, Jahresbericht der Deutschen Math-Vereinigung, Vol. 119, 2017) "This impressive monograph is about an important and highly active area that straddles the fertile land occupied by both probability and analysis. ... It is written with great clarity and style, and was clearly a labour of love for the authors. I am convinced that it will be a valuable resource for researchers in analysis and probability for many years to come." (David Applebaum, The Mathematical Gazette, Vol. 100 (548), July, 2016), "The book is friendly written and is of a rich content. With simple examples, main ideas of the study are clearly explained and naturally extended to a general framework, so that main progress in the field made for the past decades is presented in a smooth way. The monograph is undoubtedly a significant reference for further development of diffusion semigroups and related topics." (Feng-Yu Wang, zbMATH 1376.60002, 2018) "It is extremely rich. It is more original and inspirational than a treatise. One can use it and benefit from it in many ways: as a reference book, as an inspiration source, by focusing on a property or on an example. ... From the beginning to the end, this book definitely has a strong personality and a characteristic taste. ... anybody who wants to explore analytic, probabilistic or geometric properties of Markov semigroupsto have a look at it first." (Thierry Coulhon, Jahresbericht der Deutschen Math-Vereinigung, Vol. 119, 2017) "This impressive monograph is about an important and highly active area that straddles the fertile land occupied by both probability and analysis. ... It is written with great clarity and style, and was clearly a labour of love for the authors. I am convinced that it will be a valuable resource for researchers in analysis and probability for many years to come." (David Applebaum, The Mathematical Gazette, Vol. 100 (548), July, 2016), "The book is friendly written and is of a rich content. With simple examples, main ideas of the study are clearly explained and naturally extended to a general framework, so that main progress in the field made for the past decades is presented in a smooth way. The monograph is undoubtedly a significant reference for further development of diffusion semigroups and related topics." (Feng-Yu Wang, zbMATH 1376.60002, 2018) "It is extremely rich. It is more original and inspirational than a treatise. One can use it and benefit from it in many ways: as a reference book, as an inspiration source, by focusing on a property or on an example. ... From the beginning to the end, this book definitely has a strong personality and a characteristic taste. ... anybody who wants to explore analytic, probabilistic or geometric properties of Markov semigroups to have a look at it first." (Thierry Coulhon, Jahresbericht der Deutschen Math-Vereinigung, Vol. 119, 2017) "This impressive monograph is about an important and highly active area that straddles the fertile land occupied by both probability and analysis. ... It is written with great clarity and style, and was clearly a labour of love for the authors. I am convinced that it will be a valuable resource for researchers in analysis and probability for many years to come." (David Applebaum, The Mathematical Gazette, Vol. 100 (548), July, 2016), "This impressive monograph is about an important and highly active area that straddles the fertile land occupied by both probability and analysis. ... It is written with great clarity and style, and was clearly a labour of love for the authors. I am convinced that it will be a valuable resource for researchers in analysis and probability for many years to come." (David Applebaum, The Mathematical Gazette, Vol. 100 (548), July, 2016)
Series Volume Number348
Number of Volumes1 vol.
IllustratedYes
Dewey Decimal519.233
Table Of ContentIntroduction.- Part I Markov semigroups, basics and examples: 1.Markov semigroups. - 2.Model examples.- 3.General setting.- Part II Three model functional inequalities: 4.Poincaré inequalities.- 5.Logarithmic Sobolev inequalities.- 6.Sobolev inequalities.- Part III Related functional, isoperimetric and transportation inequalities: 7.Generalized functional inequalities.- 8.Capacity and isoperimetry-type inequalities.- 9.Optimal transportation and functional inequalities.- Part IV Appendices: A.Semigroups of bounded operators on a Banach space.- B.Elements of stochastic calculus.- C.Some basic notions in differential and Riemannian geometry.- Notations and list of symbols.- Bibliography.- Index.
SynopsisThe present volume is an extensive monograph on the analytic and geometric aspects of Markov diffusion operators. It focuses on the geometric curvature properties of the underlying structure in order to study convergence to equilibrium, spectral bounds, functional inequalities such as Poincaré, Sobolev or logarithmic Sobolev inequalities, and various bounds on solutions of evolution equations. At the same time, it covers a large class of evolution and partial differential equations. The book is intended to serve as an introduction to the subject and to be accessible for beginning and advanced scientists and non-specialists. Simultaneously, it covers a wide range of results and techniques from the early developments in the mid-eighties to the latest achievements. As such, students and researchers interested in the modern aspects of Markov diffusion operators and semigroups and their connections to analytic functional inequalities, probabilistic convergence to equilibrium and geometric curvature will find it especially useful. Selected chapters can also be used for advanced courses on the topic., This volume focuses on the concrete interplay between the analytic, probabilistic and geometric aspects of Markov diffusion semigroups. It covers a large body of results and techniques, from the early developments in the mid-eighties to current achievements., The present volume is an extensive monograph on the analytic and geometric aspects of Markov diffusion operators. It focuses on the geometric curvature properties of the underlying structure in order to study convergence to equilibrium, spectral bounds, functional inequalities such as Poincaré, Sobolev or logarithmic Sobolev inequalities, and various bounds on solutions of evolution equations. At the same time, it covers a large class of evolution and partial differential equations. The book is intended to serve as an introduction to the subject and to be accessible for beginning and advanced scientists and non-specialists. Simultaneously, it covers a wide range of results and techniques from the early developments in the mid-eighties to the latest achievements. As such, students and researchers interested in the modern aspects of Markov diffusion operators and semigroups and their connections to analytic functional inequalities, probabilistic convergence to equilibrium andgeometric curvature will find it especially useful. Selected chapters can also be used for advanced courses on the topic.
LC Classification NumberQA299.6-433