|En la categoría:
¿Quieres vender uno?

Introductory Discrete Mathematics by V K Balakrishnan: New

AlibrisBooks
(455343)
Registrado como vendedor profesional
USD17,00
Aproximadamente14,89 EUR
Estado:
Nuevo
Último4 vendidos
Artículo popular. 4 ya se han vendido.
Otros usuarios están viendo este artículo. 3 lo han añadido a su lista de seguimiento.
Envío:
Gratis Standard Shipping.
Ubicado en: Sparks, Nevada, Estados Unidos
Entrega:
Entrega prevista entre el mar. 10 jun. y el lun. 16 jun. a 94104
Calculamos el plazo de entrega con un método patentado que combina diversos factores, como la proximidad del comprador a la ubicación del artículo, el servicio de envío seleccionado, el historial de envíos del vendedor y otros datos. Los plazos de entrega pueden variar, especialmente en épocas de mucha actividad.
Devoluciones:
30 días para devoluciones. El comprador paga el envío de la devolución..
Pagos:
    Diners Club

Compra con confianza

Garantía al cliente de eBay
Si no recibes el artículo que has pedido, te devolvemos el dinero. Más informaciónGarantía al cliente de eBay - se abre en una nueva ventana o pestaña
El vendedor asume toda la responsabilidad de este anuncio.
N.º de artículo de eBay:364033683679
Última actualización el 22 may 2025 00:47:58 H.EspVer todas las actualizacionesVer todas las actualizaciones

Características del artículo

Estado
Nuevo: Libro nuevo, sin usar y sin leer, que está en perfecto estado; incluye todas las páginas sin ...
Book Title
Introductory Discrete Mathematics
Publication Date
2010-10-18
Pages
256
ISBN
0486691152

Acerca de este producto

Product Identifiers

Publisher
Dover Publications, Incorporated
ISBN-10
0486691152
ISBN-13
9780486691152
eBay Product ID (ePID)
961798

Product Key Features

Number of Pages
256 Pages
Publication Name
Introductory Discrete Mathematics
Language
English
Publication Year
2010
Subject
Référence, Discrete Mathematics
Type
Textbook
Author
V. K. Balakrishnan
Subject Area
Mathematics
Series
Dover Books on Computer Science Ser.
Format
Trade Paperback

Dimensions

Item Height
0.5 in
Item Weight
13.2 Oz
Item Length
9.2 in
Item Width
6.5 in

Additional Product Features

Intended Audience
College Audience
LCCN
95-052384
Dewey Edition
20
Illustrated
Yes
Dewey Decimal
511
Table Of Content
Preface 0 Set Theory and Logic 0.1 Introduction to Set Theory 0.2 Functions and Relations 0.3 Inductive Proofs and Recursive Definitions 0.4 The Language of Logic 0.5 Notes and References 0.6 Exercises 1 Combinatorics 1.1 Two Basic Counting Rules 1.2 Permutations 1.3 Combinations 1.4 More on Permutations and Combinations 1.5 The Pigeonhole Principle 1.6 The Inclusion-Exclusion Principle 1.7 Summary of Results in Combinatorics 1.8 Notes and References 1.9 Exercises 2 Generating Functions 2.1 Introduction 2.2 Ordinary Generating Functions 2.3 Exponential Generating Functions 2.4 Notes and References 2.5 Exercises 3 Recurrence Relations 3.1 Introduction 3.2 Homogeneous Recurrence Relations 3.3 Inhomogeneous Recurrence Relations 3.4 Recurrence Relations and Generating Functions 3.5 Analysis of Alogorithms 3.6 Notes and References 3.7 Exercises 4 Graphs and Digraphs 4.1 Introduction 4.2 Adjacency Matrices and Incidence Matrices 4.3 Joining in Graphs 4.4 Reaching in Digraphs 4.5 Testing Connectedness 4.6 Strong Orientation of Graphs 4.7 Notes and References 4.8 Exercises 5 More on Graphs and Digraphs 5.1 Eulerian Paths and Eulerian Circuits 5.2 Coding and de Bruijn Digraphs 5.3 Hamiltonian Paths and Hamiltonian Cycles 5.4 Applications of Hamiltonian Cycles 5.5 Vertex Coloring and Planarity of Graphs 5.6 Notes and References 5.7 Exercises 6 Trees and Their Applications 6.1 Definitions and Properties 6.2 Spanning Trees 6.3 Binary Trees 6.4 Notes and References 6.5 Exercises 7 Spanning Tree Problems 7.1 More on Spanning Trees 7.2 Kruskal's Greedy Algorithm 7.3 Prim's Greedy Algorithm 7.4 Comparison of the Two Algorithms 7.5 Notes and References 7.6 Exercises 8 Shortest Path Problems 8.1 Introduction 8.2 Dijkstra's Algorithm 8.3 Floyd-Warshall Algorithm 8.4 Comparison of the Two Algorithms 8.5 Notes and References 8.6 Exercises Appendix What is NP-Completeness? A.1 Problems and Their Instances A.2 The Size of an Instance A.3 Algorithm to Solve a Problem A.4 Complexity of an Algorithm A.5 "The "Big Oh" or the O(·) Notation" A.6 Easy Problems and Difficult Problems A.7 The Class P and the Class NP A.8 Polynomial Transformations and NP-Completeness A.9 Coping with Hard Problems Bibliography Answers to Selected Exercises Index
Edition Description
Reprint,New Edition
Synopsis
Concise, undergraduate-level text focuses on combinatorics, graph theory with applications to some standard network optimization problems, and algorithms to solve these problems. Applications are emphasized and more than 200 exercises help students test their grasp of the material. Appendix. Bibliography. Answers to Selected Exercises., This concise, undergraduate-level text focuses on combinatorics, graph theory with applications to some standard network optimization problems, and algorithms. More than 200 exercises, many with complete solutions. 1991 edition., This concise, undergraduate-level text focuses on combinatorics, graph theory with applications to some standard network optimization problems, and algorithms. Geared toward mathematics and computer science majors, it emphasizes applications, offering more than 200 exercises to help students test their grasp of the material and providing answers to selected exercises. 1991 edition., This concise text offers an introduction to discrete mathematics for undergraduate students in computer science and mathematics. Mathematics educators consider it vital that their students be exposed to a course in discrete methods that introduces them to combinatorial mathematics and to algebraic and logical structures focusing on the interplay between computer science and mathematics. The present volume emphasizes combinatorics, graph theory with applications to some stand network optimization problems, and algorithms to solve these problems. Chapters 03 cover fundamental operations involving sets and the principle of mathematical induction, and standard combinatorial topics: basic counting principles, permutations, combinations, the inclusion-exclusion principle, generating functions, recurrence relations, and an introduction to the analysis of algorithms. Applications are emphasized wherever possible and more than 200 exercises at the ends of these chapters help students test their grasp of the material. Chapters 4 and 5 survey graphs and digraphs, including their connectedness properties, applications of graph coloring, and more, with stress on applications to coding and other related problems. Two important problems in network optimization the minimal spanning tree problem and the shortest distance problem are covered in the last two chapters. A very brief nontechnical exposition of the theory of computational complexity and NP-completeness is outlined in the appendix., This concise text offers an introduction to discrete mathematics for undergraduate students in computer science and mathematics. Mathematics educators consider it vital that their students be exposed to a course in discrete methods that introduces them to combinatorial mathematics and to algebraic and logical structures focusing on the interplay between computer science and mathematics. The present volume emphasizes combinatorics, graph theory with applications to some stand network optimization problems, and algorithms to solve these problems. Chapters 0-3 cover fundamental operations involving sets and the principle of mathematical induction, and standard combinatorial topics: basic counting principles, permutations, combinations, the inclusion-exclusion principle, generating functions, recurrence relations, and an introduction to the analysis of algorithms. Applications are emphasized wherever possible and more than 200 exercises at the ends of these chapters help students test their grasp of the material. Chapters 4 and 5 survey graphs and digraphs, including their connectedness properties, applications of graph coloring, and more, with stress on applications to coding and other related problems. Two important problems in network optimization the minimal spanning tree problem and the shortest distance problem are covered in the last two chapters. A very brief nontechnical exposition of the theory of computational complexity and NP-completeness is outlined in the appendix.
LC Classification Number
QA39.2.B35

Descripción del artículo del vendedor

Información de vendedor profesional

Certifico que todas mis actividades de venta cumplirán todas las leyes y reglamentos de la UE.
Acerca de este vendedor

AlibrisBooks

98,5% de votos positivos1,9 millones artículos vendidos

Se unió el may 2008
Registrado como vendedor profesional
Alibris is the premier online marketplace for independent sellers of new & used books, as well as rare & collectible titles. We connect people who love books to thousands of independent sellers around ...
Ver más
Visitar tiendaContactar

Valoraciones detalladas sobre el vendedor

Promedio durante los últimos 12 meses
Descripción precisa
4.9
Gastos de envío razonables
5.0
Rapidez de envío
4.9
Comunicación
4.9

Votos de vendedor (506.723)

Todas las valoraciones
Positivas
Neutras
Negativas
  • -***8 (43)- Votos emitidos por el comprador.
    Últimos 6 meses
    Compra verificada
    Incredible quality, excellent condition, high value, and a nearly flawless appearance. Only a couple pages were creased along their edge near the middle of the book, but i straightened them with ease. Fast shipping, exactly as listed, would definitely buy more from this seller!
Ver todos los votos