Probabilistic Graphical Models: Principles and , Koller, Friedman..

Awesomebooksusa
(450109)
Registrado como vendedor profesional
USD159,17
Aproximadamente136,99 EUR
Estado:
Nuevo
2 disponibles
Respira tranquilidad. Se aceptan devoluciones.
Envío:
Gratis USPS Media MailTM.
Ubicado en: MD, Estados Unidos
Entrega:
Entrega prevista entre el vie. 17 oct. y el jue. 23 oct. a 94104
Las fechas previstas de entrega (se abre en una nueva ventana o pestaña) incluyen el tiempo de manipulación del vendedor, el código postal de origen, el código postal de destino y la hora de aceptación, y dependen del servicio de envío seleccionado y de que el pago se haya hecho efectivoel pago se haya hecho efectivo (se abre en una nueva ventana o pestaña). Los plazos de entrega pueden variar, especialmente en épocas de mucha actividad.
Devoluciones:
30 días para devoluciones. El comprador paga el envío de la devolución..
Pagos:
    Diners Club

Compra con confianza

Garantía al cliente de eBay
Si no recibes el artículo que has pedido, te devolvemos el dinero. Más informaciónGarantía al cliente de eBay - se abre en una nueva ventana o pestaña
El vendedor asume toda la responsabilidad de este anuncio.
N.º de artículo de eBay:333717965527
Última actualización el 09 oct 2025 15:42:55 H.EspVer todas las actualizacionesVer todas las actualizaciones

Características del artículo

Estado
Nuevo: Libro nuevo, sin usar y sin leer, que está en perfecto estado; incluye todas las páginas sin ...
Title
Probabilistic Graphical Models: Principles and Techniques (Adapt
Artist
Not Specified
ISBN
9780262013192
Categoría

Acerca de este producto

Product Identifiers

Publisher
MIT Press
ISBN-10
0262013193
ISBN-13
9780262013192
eBay Product ID (ePID)
73169822

Product Key Features

Number of Pages
1270 Pages
Publication Name
Probabilistic Graphical Models : Principles and Techniques
Language
English
Publication Year
2009
Subject
Programming / Algorithms, Intelligence (Ai) & Semantics, Probability & Statistics / Bayesian Analysis
Type
Textbook
Subject Area
Mathematics, Computers
Author
Daphne Koller
Series
Adaptive Computation and Machine Learning Ser.
Format
Hardcover

Dimensions

Item Height
2 in
Item Weight
78 Oz
Item Length
9.4 in
Item Width
8.3 in

Additional Product Features

Intended Audience
Trade
LCCN
2009-008615
Dewey Edition
22
Reviews
"This landmark book provides a very extensive coverage of the field, ranging from basic representational issues to the latest techniques for approximate inference and learning. As such, it is likely to become a definitive reference for all those who work in this area. Detailed worked examples and case studies also make the book accessible to students." -Kevin Murphy, Department of Computer Science, University of British Columbia
Illustrated
Yes
Dewey Decimal
519.5/420285
Synopsis
A general framework for constructing and using probabilistic models of complex systems that would enable a computer to use available information for making decisions., A general framework for constructing and using probabilistic models of complex systems that would enable a computer to use available information for making decisions. Most tasks require a person or an automated system to reason-to reach conclusions based on available information. The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality. Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones- representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material- skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs., A general framework for constructing and using probabilistic models of complex systems that would enable a computer to use available information for making decisions. Most tasks require a person or an automated system to reason--to reach conclusions based on available information. The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality. Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.
LC Classification Number
QA279.5.K65 2010

Descripción del artículo del vendedor

Información de vendedor profesional

Certifico que todas mis actividades de venta cumplirán todas las leyes y reglamentos de la UE.
Número de IVA: GB 724498118
CRN: 03800600

Información sobre seguridad y accesibilidad

Acerca de este vendedor

Awesomebooksusa

98,3% de votos positivos1,4 millones artículos vendidos

Se unió el mar 2009
Suele responder en 24 horas
Registrado como vendedor profesional
Visitar tiendaContactar

Valoraciones detalladas sobre el vendedor

Promedio durante los últimos 12 meses
Descripción precisa
4.8
Gastos de envío razonables
5.0
Rapidez de envío
5.0
Comunicación
5.0

Categorías populares de esta tienda

Votos de vendedor (556.837)

Todas las valoracionesselected
Positivas
Neutras
Negativas
  • 7***e (33)- Votos emitidos por el comprador.
    Mes pasado
    Compra verificada
    Amazing price and super fast shipping. Book arrived exactly as described in the correct box meant to ship books. No bumps or dings in the corner because of the attention to packaging. I'll keep an eye on this seller for another purchase. Highly recommend this seller!!!!
  • 5***w (1174)- Votos emitidos por el comprador.
    Mes pasado
    Compra verificada
    The book that was shown was not the book that I received. Nonetheless, when I informed the seller that it wasn't the item they advertised-/they were more than willing to make it right. Since they didn't have another copy of the title I was expecting, they promptly issued an apology; and refund full refund. I really appreciated the speed at which they were willing to make things right with this transaction. I will definitely not hesitate to do business with them again. Thank You!
  • f***f (1624)- Votos emitidos por el comprador.
    Últimos 6 meses
    Compra verificada
    Excellent Seller, Goes the Extra Mile. The Seller Was Incredibly Communicative. Smooth Transaction, Shipped Very Quickly, As Advertised; Good Price; Well Packaged & Delivered Within a Few Days. Item in Described Promised Condition, Thank You Very Much!!!!!!!!!!! A+