Imagen 1 de 4




Galería
Imagen 1 de 4




¿Quieres vender uno?
LIKE NEW Anonymizing Health Case Studies and Methods to Get You Started
USD15,00
Aproximadamente12,91 EUR
o Mejor oferta
Estado:
Como nuevo
Libro en perfecto estado y poco leído. La tapa no tiene desperfectos y si procede, con sobrecubierta para las tapas duras. Incluye todas las páginas sin arrugas ni roturas. El texto no está subrayado ni resaltado de forma alguna, y no hay anotaciones en los márgenes. Puede presentar marcas de identificación mínimas en la contraportada o las guardas. Muy poco usado. Consulta el anuncio del vendedor para obtener más información y la descripción de cualquier posible imperfección.
Oops! Looks like we're having trouble connecting to our server.
Refresh your browser window to try again.
Envío:
USD4,47 (aprox. 3,85 EUR) USPS Media MailTM.
Ubicado en: San Mateo, California, Estados Unidos
Entrega:
Entrega prevista entre el jue. 16 oct. y el sáb. 18 oct. a 94104
Devoluciones:
No se aceptan devoluciones.
Pagos:
Compra con confianza
El vendedor asume toda la responsabilidad de este anuncio.
N.º de artículo de eBay:295077551210
Última actualización el 22 sep 2023 16:06:50 H.EspVer todas las actualizacionesVer todas las actualizaciones
Características del artículo
- Estado
- Subject Area
- Data Analysis
- Subject
- Computer Science
- ISBN
- 9781449363079
Acerca de este producto
Product Identifiers
Publisher
O'reilly Media, Incorporated
ISBN-10
1449363075
ISBN-13
9781449363079
eBay Product ID (ePID)
166714146
Product Key Features
Number of Pages
225 Pages
Publication Name
Anonymizing Health Data : Case Studies and Methods to Get You Started
Language
English
Publication Year
2014
Subject
Social Aspects / General, Security / Online Safety & Privacy, Data Processing
Type
Textbook
Subject Area
Computers
Format
Trade Paperback
Dimensions
Item Height
0.6 in
Item Weight
16.1 Oz
Item Length
9.1 in
Item Width
7 in
Additional Product Features
Intended Audience
Scholarly & Professional
Dewey Edition
23
Illustrated
Yes
Dewey Decimal
610.72
Synopsis
Updated as of August 2014, this practical book will demonstrate proven methods for anonymizing health data to help your organization share meaningful datasets, without exposing patient identity. Leading experts Khaled El Emam and Luk Arbuckle walk you through a risk-based methodology, using case studies from their efforts to de-identify hundreds of datasets. Clinical data is valuable for research and other types of analytics, but making it anonymous without compromising data quality is tricky. This book demonstrates techniques for handling different data types, based on the authors' experiences with a maternal-child registry, inpatient discharge abstracts, health insurance claims, electronic medical record databases, and the World Trade Center disaster registry, among others. Understand different methods for working with cross-sectional and longitudinal datasets Assess the risk of adversaries who attempt to re-identify patients in anonymized datasets Reduce the size and complexity of massive datasets without losing key information or jeopardizing privacy Use methods to anonymize unstructured free-form text data Minimize the risks inherent in geospatial data, without omitting critical location-based health information Look at ways to anonymize coding information in health data Learn the challenge of anonymously linking related datasets, Clinical and research organizations increasingly want to share patient data, and robust de-identification is crucial to meet legal obligations and or ethical reasons. This book, written by two leading experts in de-identification, explains how to adhere to regulations in a defensible way to protect sensitive patient data. Numerous case studies are included from settings that range from typical clinical treatment to disease registries. The metrics used to determine that reidentification is unlikely, and special cases such as continuously released data, will be covered. The authors finish with a discussion of the effects of de-identification on data quality and analysis., This book, written by two leading experts in de-identification, explains how to adhere to regulations in a defensible way to protect sensitive patient data. Numerous case studies are included from settings that range from typical clinical treatment to disease registries.
LC Classification Number
R853.C3
Descripción del artículo del vendedor
Acerca de este vendedor
walkinwisdom
100% de votos positivos•855 artículos vendidos
Registrado como vendedor particularPor tanto, no se aplican los derechos de los consumidores derivados de las leyes de protección de los consumidores de la UE. La Garantía al cliente de eBay sigue aplicando a la mayoría de compras. Más informaciónMás información
Votos de vendedor (361)
- h***g (836)- Votos emitidos por el comprador.Mes pasadoCompra verificadaFast shipping, well packaged, item exactly as described
- e***t (862)- Votos emitidos por el comprador.Último añoCompra verificadaPictures were very well packaged and arrived in good time. Great seller!Set of 3 Chinese Warriors Terracotta Qin Dynasty In Shadow Boxes w/ Calligraphy (#295932146364)
- n***i (1786)- Votos emitidos por el comprador.Último añoCompra verificadaGreat service from this seller - they shipped quickly, and item was as described and well packed! A great seller to buy form - THanks!Scattergories Game Die Replacement Pieces Parts 20 Sided Letter (#295993840218)