Mathematical Statistics with Applications (Mathematical Statistics (W/ Ap - GOOD

edg1442
(2841)
Registrado como vendedor particular
Por tanto, no se aplican las normas de protección de los consumidores derivadas de la legislación de la UE en materia de consumidores. La Garantía al cliente de eBay sigue aplicando a la mayoría de compras. Más información
USD7,95
Aproximadamente6,87 EUR
o Mejor oferta
Estado:
En buen estado
Envío:
USD6,72 (aprox. 5,81 EUR) USPS Media MailTM.
Ubicado en: Alameda, California, Estados Unidos
Entrega:
Entrega prevista entre el mar. 14 oct. y el vie. 17 oct. a 94104
Calculamos el plazo de entrega con un método patentado que combina diversos factores, como la proximidad del comprador a la ubicación del artículo, el servicio de envío seleccionado, el historial de envíos del vendedor y otros datos. Los plazos de entrega pueden variar, especialmente en épocas de mucha actividad.
Devoluciones:
No se aceptan devoluciones.
Pagos:
    Diners Club

Compra con confianza

Garantía al cliente de eBay
Si no recibes el artículo que has pedido, te devolvemos el dinero. Más informaciónGarantía al cliente de eBay - se abre en una nueva ventana o pestaña
El vendedor asume toda la responsabilidad de este anuncio.
N.º de artículo de eBay:267366571769
Última actualización el 02 sep 2025 08:31:01 H.EspVer todas las actualizacionesVer todas las actualizaciones

Características del artículo

Estado
En buen estado: Libro que se ha leído pero que está en buen estado. Daños mínimos en la tapa, ...
Brand
Unbranded
Book Title
Mathematical Statistics with Applications (Mathematical Statisti
MPN
Does not apply
ISBN
9780534377410
Categoría

Acerca de este producto

Product Identifiers

Publisher
Brooks/Cole
ISBN-10
0534377416
ISBN-13
9780534377410
eBay Product ID (ePID)
157214

Product Key Features

Number of Pages
798 Pages
Language
English
Publication Name
Mathematical Statistics with Applications
Subject
Probability & Statistics / General
Publication Year
2001
Features
Revised
Type
Textbook
Subject Area
Mathematics
Author
Dennis D. Wackerly, William Mendenhall, Richard L. Scheaffer
Format
Hardcover

Dimensions

Item Height
1.5 in
Item Weight
52.9 Oz
Item Length
9.1 in
Item Width
7.6 in

Additional Product Features

Edition Number
6
Intended Audience
College Audience
LCCN
00-067506
Dewey Edition
21
Illustrated
Yes
Dewey Decimal
519.5
Table Of Content
1. What Is Statistics? Introduction. Characterizing a Set of Measurements: Graphical Methods. Characterizing a Set of Measurements: Numerical Methods. How Inferences Are Made. Theory and Reality. Summary. 2. Probability. Introduction. Probability and Inference. A Review of Set Notation. A Probabilistic Model for an Experiment: The Discrete Case. Calculating the Probability of an Event: The Sample-Point Method. Tools for Counting Sample Points. Conditional Probability and the Independence of Events. Two Laws of Probability. Calculating the Probability of an Event: The Event-Composition Methods. The Law of Total Probability and Bayes''s Rule. Numerical Events and Random Variables. Random Sampling. Summary. 3. Discrete Random Variables and Their Probability Distributions. Basic Definition. The Probability Distribution for Discrete Random Variable. The Expected Value of Random Variable or a Function of Random Variable. The Binomial Probability Distribution. The Geometric Probability Distribution. The Negative Binomial Probability Distribution (Optional). The Hypergeometric Probability Distribution. Moments and Moment-Generating Functions. Probability-Generating Functions (Optional). Tchebysheff''s Theorem. Summary. 4. Continuous Random Variables and Their Probability Distributions. Introduction. The Probability Distribution for Continuous Random Variable. The Expected Value for Continuous Random Variable. The Uniform Probability Distribution. The Normal Probability Distribution. The Gamma Probability Distribution. The Beta Probability Distribution. Some General Comments. Other Expected Values. Tchebysheff''s Theorem. Expectations of Discontinuous Functions and Mixed Probability Distributions (Optional). Summary. 5. Multivariate Probability Distributions. Introduction. Bivariate and Multivariate Probability Distributions. Independent Random Variables. The Expected Value of a Function of Random Variables. Special Theorems. The Covariance of Two Random Variables. The Expected Value and Variance of Linear Functions of Random Variables. The Multinomial Probability Distribution. The Bivariate Normal Distribution (Optional). Conditional Expectations. Summary. 6. Functions of Random Variables. Introductions. Finding the Probability Distribution of a Function of Random Variables. The Method of Distribution Functions. The Methods of Transformations. Multivariable Transformations Using Jacobians. Order Statistics. Summary. 7. Sampling Distributions and the Central Limit Theorem. Introduction. Sampling Distributions Related to the Normal Distribution. The Central Limit Theorem. A Proof of the Central Limit Theorem (Optional). The Normal Approximation to the Binomial Distributions. Summary. 8. Estimation. Introduction. The Bias and Mean Square Error of Point Estimators. Some Common Unbiased Point Estimators. Evaluating the Goodness of Point Estimator. Confidence Intervals. Large-Sample Confidence Intervals Selecting the Sample Size. Small-Sample Confidence Intervals for u and u1-u2. Confidence Intervals for o2. Summary. 9. Properties of Point Estimators and Methods of Estimation. Introduction. Relative Efficiency. Consistency. Sufficiency. The Rao-Blackwell Theorem and Minimum-Variance Unbiased Estimation. The Method of Moments. The Method of Maximum Likelihood. Some Large-Sample Properties of MLEs (Optional). Summary. 10. Hypothesis Testing. Introduction. Elements of a Statistical Test. Common Large-Sample Tests. Calculating Type II Error Probabilities and Finding the Sample Size for the Z Test. Relationships Between Hypothesis Testing Procedures and Confidence Intervals. Another Way to Report the Results of a Statistical Test: Attained Significance Levels or p-Values. Some Comments on the Theory of Hypothesis Testing. Small-Sample Hypothesis Testing for u and u1-u2. Testing Hypotheses Concerning Variances. Power of Test and the Neyman-Pearson Lemma. Likelihood Ration Test. Summary. 11. Linear Models and Estimation by L
Edition Description
Revised edition
Synopsis
This is the most widely used mathematical statistics text at the top 200 universities in the United States. Premiere authors Dennis Wackerly, William Mendenhall, and Richard L. Scheaffer present a solid undergraduate foundation in statistical theory while conveying the relevance and importance of the theory in solving practical problems in the real world. The authors' use of practical applications and excellent exercises helps students discover the nature of statistics and understand its essential role in scientific research.
LC Classification Number
QA276.M426 2002

Descripción del artículo del vendedor

Acerca de este vendedor

edg1442

100% de votos positivos1,3 mil artículos vendidos

Se unió el sep 2002
Registrado como vendedor particularPor tanto, no se aplican los derechos de los consumidores derivados de las leyes de protección de los consumidores de la UE. La Garantía al cliente de eBay sigue aplicando a la mayoría de compras. Más informaciónMás información

Votos de vendedor (868)

Todas las valoracionesselected
Positivas
Neutras
Negativas
  • 6***6 (9)- Votos emitidos por el comprador.
    Últimos 6 meses
    Compra verificada
    Great packaging! Took great care of this item. Exactly as described for a great price! It works great and it shipped in a timely manner. Great seller! Would buy from again!
  • a***l (442)- Votos emitidos por el comprador.
    Últimos 6 meses
    Compra verificada
    Thank you for an A++++ transaction! Good price, quick and secure shipping, accurate description and pics, and nice condition. Greatly appreciated!! :)
  • 5***r (329)- Votos emitidos por el comprador.
    Mes pasado
    Compra verificada
    Item as described, fast shipping, great deal and smooth transaction. Happy to deal with very recommended seller. A++++