Deep Learning (Adaptive Computation and Machine Learning series) Ian Goodfellow

The Family Flips
(9375)
Vendedor profesional
Registrado como vendedor profesional
USD76,49
Aproximadamente66,29 EUR
(USD89,99/Unit)
o Mejor oferta
Costaba USD89,99 (15% de descuento)¿Qué significa este precio?
Precio rebajado proporcionado por el vendedor
Estado:
Como nuevo
This item is new and unused however due to lack of proper packaging there is a a small scuff on the ... Más informaciónacerca del estado
La oferta finaliza en: 4 d 2 h
¡Corre antes de que se agote! 1 usuario tiene este artículo en seguimiento.
Respira tranquilidad. Envíos y devoluciones gratis.
Recogida:
Recogida local gratis en Conway, Arkansas, Estados Unidos.
Envío:
Gratis USPS Ground Advantage®.
Ubicado en: Conway, Arkansas, Estados Unidos
Entrega:
Entrega prevista entre el lun. 24 nov. y el vie. 28 nov.
Calculamos el plazo de entrega con un método patentado que combina diversos factores, como la proximidad del comprador a la ubicación del artículo, el servicio de envío seleccionado, el historial de envíos del vendedor y otros datos. Los plazos de entrega pueden variar, especialmente en épocas de mucha actividad.
Devoluciones:
30 días para devoluciones. El vendedor paga el envío de la devolución.
Pagos:
    Diners Club

Compra con confianza

Garantía al cliente de eBay
Si no recibes el artículo que has pedido, te devolvemos el dinero. Más informaciónGarantía al cliente de eBay - se abre en una nueva ventana o pestaña
El vendedor asume toda la responsabilidad de este anuncio.
N.º de artículo de eBay:205317862213

Características del artículo

Estado
Como nuevo
Libro en perfecto estado y poco leído. La tapa no tiene desperfectos y si procede, con sobrecubierta para las tapas duras. Incluye todas las páginas sin arrugas ni roturas. El texto no está subrayado ni resaltado de forma alguna, y no hay anotaciones en los márgenes. Puede presentar marcas de identificación mínimas en la contraportada o las guardas. Muy poco usado. Consulta el anuncio del vendedor para obtener más información y la descripción de cualquier posible imperfección. Ver todas las definiciones de estadose abre en una nueva ventana o pestaña
Notas del vendedor
“This item is new and unused however due to lack of proper packaging there is a a small scuff on the ...
ISBN
9780262035613
Categoría

Acerca de este producto

Product Identifiers

Publisher
MIT Press
ISBN-10
0262035618
ISBN-13
9780262035613
eBay Product ID (ePID)
228981524

Product Key Features

Number of Pages
800 Pages
Language
English
Publication Name
Deep Learning
Publication Year
2016
Subject
Intelligence (Ai) & Semantics, Computer Science
Type
Textbook
Subject Area
Computers
Author
Yoshua Bengio, Ian Goodfellow, Aaron Courville
Series
Adaptive Computation and Machine Learning Ser.
Format
Hardcover

Dimensions

Item Height
1.3 in
Item Weight
45.5 Oz
Item Length
9.3 in
Item Width
7.3 in

Additional Product Features

Intended Audience
Trade
LCCN
2016-022992
Reviews
[T]he AI bible... the text should be mandatory reading by all data scientists and machine learning practitioners to get a proper foothold in this rapidly growing area of next-gen technology., [T]he AI bible... the text should be mandatory reading by all data scientists and machine learning practitioners to get a proper foothold in this rapidly growing area of next-gen technology.-- Daniel D. Gutierrez , insideBIGDATA --
Dewey Edition
23
Illustrated
Yes
Dewey Decimal
006.3/1
Synopsis
An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. "Written by three experts in the field, Deep Learning is the only comprehensive book on the subject." -Elon Musk , cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors., An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. "Written by three experts in the field, Deep Learning is the only comprehensive book on the subject." --Elon Musk , cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.
LC Classification Number
Q325.5.G66 2017

Descripción del artículo del vendedor

Información de vendedor profesional

Certifico que todas mis actividades de venta cumplirán todas las leyes y reglamentos de la UE.

Acerca de este vendedor

The Family Flips

99,4% de votos positivos32 mil artículos vendidos

Se unió el ago 2014
Registrado como vendedor profesional
We are a small, family owned business located in the heart of Conway, Arkansas. We purchase overstock, shelf pulls and store returns from many different liquidators around the United States so that we ...
Ver más
Visitar tiendaContactar

Valoraciones detalladas sobre el vendedor

Promedio durante los últimos 12 meses
Descripción precisa
4.9
Gastos de envío razonables
5.0
Rapidez de envío
5.0
Comunicación
5.0

Votos de vendedor (9.614)

Todas las valoracionesselected
Positivas
Neutras
Negativas