Imagen 1 de 1

Galería
Imagen 1 de 1

¿Quieres vender uno?
Springer Texts in Statistics Ser.: Introduction to Statistical Learning :...
USD35,00
Aproximadamente30,69 EUR
Estado:
En buen estado
Libro que se ha leído pero que está en buen estado. Daños mínimos en la tapa, incluidas rozaduras, pero sin roturas ni agujeros. Es posible que no incluya sobrecubierta para tapas duras. Tapa muy poco desgastada. La mayoría de las páginas están en buen estado con muy pocas arrugas o roturas. El texto subrayado a lápiz es prácticamente inexistente, no hay texto resaltado ni anotaciones en los márgenes. No faltan páginas. Consulta el anuncio del vendedor para obtener más información y la descripción de cualquier posible imperfección.
Oops! Looks like we're having trouble connecting to our server.
Refresh your browser window to try again.
Envío:
Gratis Standard Shipping.
Ubicado en: American Fork, Utah, Estados Unidos
Entrega:
Entrega prevista entre el sáb. 2 ago. y el mar. 5 ago.
Devoluciones:
30 días para devoluciones. El comprador paga el envío de la devolución..
Pagos:
Compra con confianza
El vendedor asume toda la responsabilidad de este anuncio.
N.º de artículo de eBay:197484196631
Características del artículo
- Estado
- ISBN
- 9781071614174
Acerca de este producto
Product Identifiers
Publisher
Springer
ISBN-10
1071614177
ISBN-13
9781071614174
eBay Product ID (ePID)
17050082535
Product Key Features
Number of Pages
Xv, 607 Pages
Publication Name
Introduction to Statistical Learning : with Applications in R
Language
English
Publication Year
2021
Subject
Mathematical & Statistical Software, Probability & Statistics / General, Intelligence (Ai) & Semantics, General
Type
Textbook
Subject Area
Mathematics, Computers
Series
Springer Texts in Statistics Ser.
Format
Hardcover
Dimensions
Item Weight
42 Oz
Item Length
9.3 in
Item Width
6.1 in
Additional Product Features
Edition Number
2
Dewey Edition
23
TitleLeading
An
Number of Volumes
1 vol.
Illustrated
Yes
Dewey Decimal
519.5
Table Of Content
Preface.- 1 Introduction.- 2 Statistical Learning.- 3 Linear Regression.- 4 Classification.- 5 Resampling Methods.- 6 Linear Model Selection and Regularization.- 7 Moving Beyond Linearity.- 8 Tree-Based Methods.- 9 Support Vector Machines.- 10 Deep Learning.- 11 Survival Analysis and Censored Data.- 12 Unsupervised Learning.- 13 Multiple Testing.- Index.
Synopsis
An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra. This Second Edition features new chapters on deep learning, survival analysis, and multiple testing, as well as expanded treatments of na ve Bayes, generalized linear models, Bayesian additive regression trees, and matrix completion. R code has been updated throughout to ensure compatibility., An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra. This Second Edition features new chapters on deep learning, survival analysis, and multiple testing, as well as expanded treatments of naïve Bayes, generalized linear models, Bayesian additive regression trees, and matrix completion. R code has been updated throughout to ensure compatibility.
LC Classification Number
QA276-280
Descripción del artículo del vendedor
Información de vendedor profesional
Acerca de este vendedor
supersonic_books
98,6% de votos positivos•4,1 mil artículos vendidos
Registrado como vendedor profesional
Votos de vendedor (825)
- e***r (446)- Votos emitidos por el comprador.Últimos 6 mesesCompra verificadaVery fast and professional service, with fully tracked shipping from the U.S.A. to the U.K. The book arrived securely packaged and as described and shown in listing. Happy to recommend this eBay business.
- e***e (42)- Votos emitidos por el comprador.Mes pasadoCompra verificadaThe book is as described and shipped quickly with secure packaging. Thank you!
- i***p (348)- Votos emitidos por el comprador.Mes pasadoCompra verificadaItem as described, and it arrived promptly. Great seller.