Causal Inference for Statistics Social Biomedical Sciences Mathematics LIke New

oldmagazines
(6244)
Registrado como vendedor particular
Por tanto, no se aplican las normas de protección de los consumidores derivadas de la legislación de la UE en materia de consumidores. La Garantía al cliente de eBay sigue aplicando a la mayoría de compras. Más información
USD39,99
Aproximadamente34,05 EUR
Estado:
Como nuevo
Hardcover. Like new condition. Former owner's name written on inside front cover. No other ... Más informaciónacerca del estado
Envío:
USD8,78 (aprox. 7,47 EUR) USPS Ground Advantage®.
Ubicado en: Saint Louis, Missouri, Estados Unidos
Entrega:
Entrega prevista entre el jue. 25 sep. y el mar. 30 sep. a 94104
Calculamos el plazo de entrega con un método patentado que combina diversos factores, como la proximidad del comprador a la ubicación del artículo, el servicio de envío seleccionado, el historial de envíos del vendedor y otros datos. Los plazos de entrega pueden variar, especialmente en épocas de mucha actividad.
Devoluciones:
No se aceptan devoluciones.
Pagos:
    Diners Club

Compra con confianza

Garantía al cliente de eBay
Si no recibes el artículo que has pedido, te devolvemos el dinero. Más informaciónGarantía al cliente de eBay - se abre en una nueva ventana o pestaña
El vendedor asume toda la responsabilidad de este anuncio.
N.º de artículo de eBay:157068823040

Características del artículo

Estado
Como nuevo
Libro en perfecto estado y poco leído. La tapa no tiene desperfectos y si procede, con sobrecubierta para las tapas duras. Incluye todas las páginas sin arrugas ni roturas. El texto no está subrayado ni resaltado de forma alguna, y no hay anotaciones en los márgenes. Puede presentar marcas de identificación mínimas en la contraportada o las guardas. Muy poco usado. Consulta el anuncio del vendedor para obtener más información y la descripción de cualquier posible imperfección. Ver todas las definiciones de estadose abre en una nueva ventana o pestaña
Notas del vendedor
“Hardcover. Like new condition. Former owner's name written on inside front cover. No other ...
Book Title
Causal Inference for Statistics, Social, and Biomedical Sciences
ISBN-13
9780521885881
Educational Level
Adult & Further Education
Level
Advanced
Features
1st Edition, Illustrated
Country/Region of Manufacture
United States
ISBN
9780521885881
Categoría

Acerca de este producto

Product Identifiers

Publisher
Cambridge University Press
ISBN-10
0521885884
ISBN-13
9780521885881
eBay Product ID (ePID)
201647837

Product Key Features

Number of Pages
644 Pages
Language
English
Publication Name
Causal Inference for Statistics, Social, and Biomedical Sciences : an Introduction
Publication Year
2015
Subject
Probability & Statistics / General, General, Research, Logic
Type
Textbook
Subject Area
Mathematics, Philosophy, Social Science
Author
Donald B. Rubin, Guido W. Imbens
Format
Hardcover

Dimensions

Item Height
1.3 in
Item Weight
45.2 Oz
Item Length
10.3 in
Item Width
7.3 in

Additional Product Features

Intended Audience
Scholarly & Professional
LCCN
2014-020988
Dewey Edition
23
Reviews
"Correctly drawing causal inferences is critical in many important applications. Congratulations to Professors Imbens and Rubin, who have drawn on their decades of research in this area, along with the work of several others, to produce this impressive book covering concepts, theory, methods and applications. I especially appreciate their clear exposition on conceptual issues, which are important to understand in the context of either a designed experiment or an observational study, and their use of real applications to motivate the methods described." Nathaniel Schenker, Statistician, "This book will revolutionize how applied statistics is taught in statistics and the social and biomedical sciences. The authors present a unified vision of causal inference that covers both experimental and observational data. They do a masterful job of communicating some of the deepest, and oldest, issues in statistics to readers with disparate backgrounds. They closely connect theoretical concepts with applied concerns, and they honestly and clearly discuss the identifying assumptions of the methods presented. Too many books on statistical methods present a menagerie of disconnected methods and pay little attention to the scientific plausibility of the assumptions that are made for mathematical convenience, instead of for verisimilitude. This book is different. It will be widely read, and it will change the way statistics is practiced." Jasjeet S. Sekhon, Robson Professor of Political Science and Statistics, University of California, Berkeley, "A comprehensive and remarkably clear overview of randomized experiments and observational designs with as-good-as-random assignment that is sure to become the standard reference in the field." David Card, Class of 1950 Professor of Economics, University of California, Berkeley, "This thorough and comprehensive book uses the "potential outcomes" approach to connect the breadth of theory of causal inference to the real-world analyses that are the foundation of evidence-based decision making in medicine, public policy and many other fields. Imbens and Rubin provide unprecedented guidance for designing research on causal relationships, and for interpreting the results of that research appropriately." Mark McClellan, Director of the Health Care Innovation and Value Initiative, Brookings Institution, "This book will be the "Bible" for anyone interested in the statistical approach to causal inference associated with Donald Rubin and his colleagues, including Guido Imbens. Together, they have systematized the early insights of Fisher and Neyman and have then vastly developed and transformed them. In the process they have created a theory of practical experimentation whose internal consistency is mind-boggling, as is its sensitivity to assumptions and its elaboration of the key 'potential outcomes' framework. The authors' exposition of random assignment experiments has breadth and clarity of coverage, as do their chapters on observational studies that can be readily conceptualized within an experimental framework. Never have experimental principles been better warranted intellectually or better translated into statistical practice. The book is a "must read" for anyone claiming methodological competence in all sciences that rely on experimentation." Thomas D. Cook, Joan and Sarepta Harrison Chair of Ethics and Justice, Northwestern University, Illinois, "Clarity of thinking about causality is of central importance in financial decision making. Imbens and Rubin provide a rigorous foundation allowing practitioners to learn from the pioneers in the field." Stephen Blyth, Managing Director, Head of Public Markets, Harvard Management Company, "Causal Inference sets a high new standard for discussions of the theoretical and practical issues in the design of studies for assessing the effects of causes - from an array of methods for using covariates in real studies to dealing with many subtle aspects of non-compliance with assigned treatments. The book includes many examples using real data that arose from the authors' extensive research portfolios. These examples help to clarify and explain many important concepts and practical issues. It is a book that both methodologists and practitioners from many fields will find both illuminating and suggestive of further research. It is a professional tour de force, and a welcomed addition to the growing (and often confusing) literature on causation in artificial intelligence, philosophy, mathematics and statistics." Paul W. Holland, Emeritus, Educational Testing Service, "'In this wonderful and important book, Imbens and Rubin give a lucid account of the potential outcomes perspective on causality. This perspective sensibly treats all causal questions as questions about a hidden variable, indeed the ultimate hidden variable, "What would have happened if things were different?" They make this perspective mathematically precise, show when and to what degree it succeeds, and discuss how to apply it to both experimental and observational data. This book is a must-read for natural scientists, social scientists and all other practitioners who seek new hypotheses and new truths in their complex data." David Blei, Columbia University, "The book is well-written with a very comprehensive coverage of many issues associated with causal inference. As can be seen from its table of contents, the book uses multiple perspectives to discuss these issues including theoretical underpinnings, experimental design, randomization techniques and examples using real-world data." Carol Joyce Blumberg, International Statistical Review, "This book offers a definitive treatment of causality using the potential outcomes approach. Both theoreticians and applied researchers will find this an indispensable volume for guidance and reference." Hal Varian, University of California, Berkeley, "This book will be the "Bible" for anyone interested in the statistical approach to causal inference associated with Donald Rubin and his colleagues, including Guido Imbens. Together, they have systematized the early insights of Fisher and Neyman and have then vastly developed and transformed them. In the process they have created a theory of practical experimentation whose internal consistency is mind-boggling, as is its sensitivity to assumptions and its elaboration of the key 'potential outcomes' framework. The authors' exposition of random assignment experiments has breadth and clarity of coverage, as do their chapters on observational studies that can be readily conceptualized within an experimental framework. Never have experimental principles been better warranted intellectually or better translated into statistical practice. The book is a "must read" for anyone claiming methodological competence in all sciences that rely on experimentation." Thomas D. Cook, Joan and Sarepta Harrison Chair of Ethics and Justice, Northwestern University, "A masterful account of the potential outcomes approach to causal inference from observational studies that Rubin has been developing since he pioneered it fourty years ago." Adrian Raftery, Blumstein-Jordan Professor of Statistics and Sociology, University of Washington, "This thorough and comprehensive book uses the "potential outcomes" approach to connect the breadth of theory of causal inference to the real-world analyses that are the foundation of evidence-based decision making in medicine, public policy and many other fields. Imbens and Rubin provide unprecedented guidance for designing research on causal relationships, and for interpreting the results of that research appropriately." Mark McClellan, Director of the Health Care Innovation and Value Initiative, Brookings Institution, Washington DC, "By putting the potential outcome framework at the center of our understanding of causality, Imbens and Rubin have ushered in a fundamental transformation of empirical work in economics. This book, at once transparent and deep, will be both a fantastic introduction to fundamental principles and a practical resource for students and practitioners. It will be required readings for any class I teach." Esther Duflo, Massachusetts Institute of Technology, "This book will be the "Bible" for anyone interested in the statistical approach to causal inference associated with Donald Rubin and his colleagues, including Guido Imbens. Together, they have systematized the early insights of Fisher and Neyman and have then vastly developed and transformed them. In the process they have created a theory of practical experimentation whose internal consistency is mind-boggling, as is its sensitivity to assumptions and its elaboration of the key 'potential outcomes' framework. The authors' exposition of random assignment experiments has breadth and clarity of coverage, as do their chapters on observational studies that can be readily conceptualized within an experimental framework. Never have experimental principles been better warranted intellectually or better translated into statistical practice. The book is a "must read" for anyone claiming methodological competence in all sciences that rely on experimentation." Thomas D. Cook, Joan and Sarepta Harrison Chair of Ethics and Justice, Northwestern University, Illinoisof Ethics and Justice, Northwestern University, Illinoisof Ethics and Justice, Northwestern University, Illinoisof Ethics and Justice, Northwestern University, Illinois, "This book offers a definitive treatment of causality using the potential outcomes approach. Both theoreticians and applied researchers will find this an indispensable volume for guidance and reference." Hal Varian, Chief Economist, Google and Emeritus Professor, University of California, Berkeley
Illustrated
Yes
Dewey Decimal
519.54
Table Of Content
Part I. Introduction: 1. The basic framework: potential outcomes, stability, and the assignment mechanism; 2. A brief history of the potential-outcome approach to causal inference; 3. A taxonomy of assignment mechanisms; Part II. Classical Randomized Experiments: 4. A taxonomy of classical randomized experiments; 5. Fisher's exact P-values for completely randomized experiments; 6. Neyman's repeated sampling approach to completely randomized experiments; 7. Regression methods for completely randomized experiments; 8. Model-based inference in completely randomized experiments; 9. Stratified randomized experiments; 10. Paired randomized experiments; 11. Case study: an experimental evaluation of a labor-market program; Part III. Regular Assignment Mechanisms: Design: 12. Unconfounded treatment assignment; 13. Estimating the propensity score; 14. Assessing overlap in covariate distributions; 15. Design in observational studies: matching to ensure balance in covariate distributions; 16. Design in observational studies: trimming to ensure balance in covariate distributions; Part IV. Regular Assignment Mechanisms: Analysis: 17. Subclassification on the propensity score; 18. Matching estimators (Card-Krueger data); 19. Estimating the variance of estimators under unconfoundedness; 20. Alternative estimands; Part V. Regular Assignment Mechanisms: Supplementary Analyses: 21. Assessing the unconfoundedness assumption; 22. Sensitivity analysis and bounds; Part VI. Regular Assignment Mechanisms with Noncompliance: Analysis: 23. Instrumental-variables analysis of randomized experiments with one-sided noncompliance; 24. Instrumental-variables analysis of randomized experiments with two-sided noncompliance; 25. Model-based analyses with instrumental variables; Part VII. Conclusion: 26. Conclusions and extensions.
Synopsis
Most questions in social and biomedical sciences are causal in nature: what would happen to individuals, or to groups, if part of their environment were changed? In this groundbreaking text, two world-renowned experts present statistical methods for studying such questions. This book starts with the notion of potential outcomes, each corresponding to the outcome that would be realized if a subject were exposed to a particular treatment or regime. In this approach, causal effects are comparisons of such potential outcomes. The fundamental problem of causal inference is that we can only observe one of the potential outcomes for a particular subject. The authors discuss how randomized experiments allow us to assess causal effects and then turn to observational studies. They lay out the assumptions needed for causal inference and describe the leading analysis methods, including matching, propensity-score methods, and instrumental variables. Many detailed applications are included, with special focus on practical aspects for the empirical researcher., Most questions in social and biomedical sciences are causal in nature: what would happen to individuals, or to groups, if part of their environment were changed? In this groundbreaking text, two world-renowned experts present statistical methods for studying such questions. This book starts with the notion of potential outcomes, each corresponding to the outcome that would be realized if a subject were exposed to a particular treatment or regime. In this approach, causal effects are comparisons of such potential outcomes. The fundamental problem of causal inference is that we can only observe one of the potential outcomes for a particular subject. The authors discuss how randomized experiments allow us to assess causal effects and then turn to observational studies. They lay out the assumptions needed for causal inference and describe the leading analysis methods, including, matching, propensity-score methods, and instrumental variables. Many detailed applications are included, with special focus on practical aspects for the empirical researcher., In this groundbreaking text, two world-renowned experts present statistical methods for studying causal effects: how can we learn about the expected effect of an intervention or a change in environment? The authors discuss how we can assess such effects in simple randomized experiments, where the researcher controls the treatments, and in observational studies, where the subjects themselves may affect which treatment they receive.
LC Classification Number
H62 .I537 2015

Descripción del artículo del vendedor

Acerca de este vendedor

oldmagazines

100% de votos positivos11 mil artículos vendidos

Se unió el feb 2000
Suele responder en 24 horas
Registrado como vendedor particularPor tanto, no se aplican los derechos de los consumidores derivados de las leyes de protección de los consumidores de la UE. La Garantía al cliente de eBay sigue aplicando a la mayoría de compras. Más informaciónMás información
Oldmagazines is an established ebay seller with more than 20 years experience. Oldmagazines has a huge stock of old Life magazines, most not listed. These make great birthday or anniversary gifts. ...
Ver más
Visitar tiendaContactar

Valoraciones detalladas sobre el vendedor

Promedio durante los últimos 12 meses
Descripción precisa
4.9
Gastos de envío razonables
4.9
Rapidez de envío
5.0
Comunicación
5.0

Votos de vendedor (6.501)

Todas las valoraciones
Positivas
Neutras
Negativas
  • a***_ (1097)- Votos emitidos por el comprador.
    Últimos 6 meses
    Compra verificada
    Excellent seller. Repeat customer because fast shipping, good packaging and items as described. Great value, thank you again!
  • s***r (21)- Votos emitidos por el comprador.
    Últimos 6 meses
    Compra verificada
    Item processed, shipped and delivered in very timely manner. Packaging of item was beyond what I would expect for a small map. This seller apparently takes great pride in protecting the item being shipped. Condition of item was as described. Very much appreciated!! Would not hesitate to order from this seller again. Thank you.
  • 0***0 (36)- Votos emitidos por el comprador.
    Últimos 6 meses
    Compra verificada
    Item arrived sealed and in new condition as promised. I recommend this seller.